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FORBIDDEN INTEGER RATIOS OF CONSECUTIVE POWER

SUMS

IOULIA N. BAOULINA AND PIETER MOREE

To the memory of Prof. Wolfgang Schwarz

Abstract. Let Sk(m) := 1k + 2k + · · ·+ (m− 1)k denote a power sum. In 2011
Bernd Kellner formulated the conjecture that form ≥ 4 the ratio Sk(m+1)/Sk(m)
of two consecutive power sums is never an integer. We will develop some techniques
that allow one to exclude many integers ρ as a ratio and combine them to exclude
the integers 3 ≤ ρ ≤ 1501 and, assuming a conjecture on irregular primes to be
true, a set of density 1 of ratios ρ. To exclude a ratio ρ one has to show that the
Erdős-Moser type equation (ρ− 1)Sk(m) = mk has no non-trivial solutions.

1. Introduction

Power sums have fascinated mathematicians for centuries. In this paper we con-
sider some Diophantine equations involving power sums, of which the Erdős-Moser
equation

1k + 2k + · · ·+ (m− 2)k + (m− 1)k = mk (1)

is typical and the most famous one. This equation has the obvious solution (m, k) =
(3, 1) and conjecturally no other solutions exist (this conjecture was formulated
around 1950 by Paul Erdős in a letter to Leo Moser). Leo Moser [22], using only
elementary number theory, established the following result.

Theorem 1 (Leo Moser, 1953). If (m, k) is a solution of (1) with k ≥ 2, then

m > 1010
6

.

For the shortest proof of this result presently known, we refer to Moree [18].
Using very different techniques, namely continued fractions and a many decimal

computation of log 2, Gallot et al. [7] established the current world record:

Theorem 2 (Gallot et al., 2011). If an integer pair (m, k) with k ≥ 2 satisfies (1),
then

m > 2.7139 · 10 1 667 658 416.

The bound m > 1010
10

seems feasible, but requires somewhat better computer
resources than the authors of [7] had at their disposal.

Let Sk(m) :=
∑m−1

j=1 jk be the sum of the first m− 1 consecutive kth powers. In

this notation we can rewrite (1) as

Sk(m) = mk. (2)
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In the literature also the generalized Erdős-Moser conjecture is considered. The
strongest result to date is due to the second author [19] who proved the following.

Theorem 3. For a fixed positive integer a, the equation Sk(m) = amk has no integer
solutions (m, k) with

k ≥ 2, m < max
(

109·10
6

, a · 1028
)

.

Interestingly, the method of Gallot et al. allows one only to deal with a specific
value of a, for a general a only the elementary method of Moser is available.

Kellner [11] conjectured that if k and m are positive integers with m ≥ 3, the ratio
Sk(m+ 1)/Sk(m) is an integer iff (m, k) ∈ {(3, 1), (3, 3)}. Noting that Sk(m+ 1) =
Sk(m) +mk, one observes that this conjecture is equivalent with the following one.

Conjecture 1 (Kellner-Erdős-Moser). Let m ≥ 3. We have

aSk(m) = mk (3)

iff (a,m, k) ∈ {(1, 3, 1), (3, 3, 3)}.
If this conjecture holds true, then obviously so does the Erdős-Moser conjecture.
However, whereas the Erdős-Moser conjecture is open, we are able to establish the
unsolvability of (3) for many integers a.

Theorem 4. If a has a regular prime as divisor or 2 ≤ a ≤ 1500, then the equation
aSk(m) = mk has no solution with m ≥ 4.

(We consider 2 to be a regular prime, see Section 2 for details.) The first restriction
on a is not very difficult to prove, but powerful in its consequences. Assume that
there exists a real number δ < 1 such that the number of irregular primes p ≤ x is
bounded above by δx/ log x as x → ∞. It then follows (see Section 2) that, for a
set of integers a of density 1, aSk(m) = mk has no solution with m ≥ 4. The first
restriction implies that in order to exclude the a in the range 2 ≤ a ≤ 1500, one has
to exclude a = 372 and all irregular primes in this interval. These a can be dealt
with using various technical and not very general necessary conditions for (3) to be
solvable.

In case we are not able to exclude a square-free a, we are able to show that if (3)
holds, then both k and m are large.

Theorem 5. Suppose that aSk(m) = mk, m ≥ 4 and a is square-free, then both k
and m exceed 3.44 · 1082.
We like to point out that for solutions with m ≡ 1 (mod 3) or m ≡ 1 (mod 30)
much larger lower bounds hold true (see Theorem 7).

For a fixed integer a ≥ 1 it is not known whether there are finitely many solutions
(m, k) of (3) or not. In this direction we can only contribute the following modest
result.

Proposition 1. Let (m1, k1) and (m2, k2) be different solutions of aSk(m) = mk.
Then m1 6= m2 and k1 6= k2.
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A final approach of dealing with equation (3) is to try to prove that k is divisible
by 120 say. Once established, there are many options of how to get an even bigger
number to divide k. A cascade of ways how to proceed further arises and it seems
very likely then that also in this case a+1 cannot occur as a ratio. We demonstrate
this cascade process in Section 7. Paul Tegelaar [26] jokingly called this ‘the method
of infinite ascent’.

After discussing some basic material on Bernoulli numbers and power sums in
Section 2, we obtain a crucial result (Theorem 6) relating Bernoulli numbers and
solutions of the Kellner-Erdős-Moser equation in Section 3. Integers a that are a
product of irregular primes cannot be immediately excluded, and for these one can
use helpful pairs, see Section 4. They allow one to rule out that k ≡ c (mod d) for
many even integers c ≥ 2 and d. In Section 5 we demonstrate with both an easy
and a difficult example how to exclude a given integer ratio ρ. Table 3 illustrates in
a compact way how to show that 3 ≤ ρ ≤ 1501 are forbidden ratios. Some ratios
are clearly much easier to exclude than others and this is discussed in Section 6.
In Section 7 we discuss how to show that a given integer divides k. In Section 8
we reason in the way of Moser to derive lower bounds for k and m in case a is
squarefree. In Section 9 proofs of the new results announced above are given. These
are mainly based on work done in earlier sections. In the final section, Section 10,
some further properties of potential solutions of the Kellner-Erdős-Moser equation
are derived. The proof that the integers 2 ≤ a ≤ 1500 are forbidden makes use of
Tables 2 and 3.

A survey of earlier work on Erdős-Moser type conjectures can be found in Moree [19],
also see [3, Chapter 8], for an expository account of the work of Gallot et al. [7].

2. Preliminaries on Bernoulli numbers and power sums

Lemma 1 (Carlitz-von Staudt). Let k and m be positive integers, then

Sk(m) =
m−1
∑

j=1

jk =

{

0 (mod m(m−1)
2

) if k is odd,

−∑p|m,(p−1)|k
m
p

(mod m) otherwise.

This result, with some small error (cf. Moree [16]), was published in 1961 by
Carlitz. For an easy reproof of the above result, see Moree [18].

Recall that the Bernoulli numbers Bk are defined by the power series

t

et − 1
=

∞
∑

k=0

Bkt
k

k!
.

They are rational numbers and can be written as Bk = Uk/Vk, with Vk > 0 and
gcd(Uk, Vk) = 1. One has B0 = 1, B1 = −1/2, B2 = 1/6 and B2j+1 = 0 for j ≥ 1.

In the next four lemmas, we record some well-known facts about the Bernoulli
numbers (see [8, Chapter 15]).

Lemma 2 (von Staudt-Clausen). If k ≥ 2 is even, then Vk =
∏

(p−1)|k p.

Lemma 3 (Kummer congruence). Let k ≥ 2 be even and p be a prime with (p−1) ∤ k.
If k ≡ r (mod p− 1), then Bk/k ≡ Br/r (mod p).
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Lemma 4. For any integers k ≥ 1 and m ≥ 2,

Sk(m) =
k
∑

j=0

(

k

j

)

Bk−j
mj+1

j + 1
.

Lemma 5 (Voronoi congruence). Let k and m be positive integers, where m ≥ 2
and k ≥ 2 is even, then VkSk(m) ≡ Ukm (mod m2).

The following lemma gives a refinement of the Voronoi congruence (see [10, Propo-
sition 8.5]).

Lemma 6. Let k and m be positive integers, where m ≥ 2 and k ≥ 6 is even. If
m | Uk then VkSk(m) ≡ Ukm (mod m3).

A prime p will be called regular if it does not divide any of the numerators Ur with
even r ≤ p− 3, otherwise it is said to be irregular. The pairs (r, p) with p | Ur and
even r ≤ p − 3 are called irregular pairs. At a first glance this looks like a strange
definition, but by celebrated work of Kummer (1850) [12] can be reformulated as:
a prime p is irregular if and only if it divides the class number of Q(ζp). The first
few irregular primes are 37, 59, 67, 101, 103, 131, 149, . . . . It is known that there are
infinitely many irregular primes, cf. Carlitz [6]. It is not known whether there are
infinitely many regular primes. Let πι(x) denote the number of irregular primes
p ≤ x. Recently Luca et al. [14, Theorem 1] showed that

πι(x) ≥ (1 + o(1))
log log x

log log log x
, x → ∞.

Conjecturally, cf. Siegel [25], and in good agreement with numerical work, we should
have

πι(x) ∼
(

1− 1√
e

)

π(x) ≈ 0.3935
x

log x
.

Let Nι(x) denote the number of integers n ≤ x that are composed only of irregular
primes. If we assume that

πι(x) ∼ δ
x

log x
, 0 < δ < 1, (4)

then by Moree [20, Theorem 1] we have Nι(x) ∼ cx logδ−1 x as x → ∞, with c a
positive real constant. (Kummer conjectured that δ = 1/2.) The latter result is of
Wirsing type (cf. Schwarz and Spilker [24, 65-76]).

For more results on Bernoulli numbers see e.g. the book by Arakawa et al. [1].

3. The Kellner-Erdős-Moser conjecture

In this section, we will use properties of Bernoulli numbers to study the non-
trivial solutions of the equation aSk(m) = mk. This will then lead us to establish
Theorem 6. As a bonus we will conclude that if aSk(m) = mk has non-trivial
solutions, then a must be either 1 or a product of irregular primes.

First assume that m = 2. Then a = 2k. Next assume that m = 3. Then
we must have a(1 + 2k) = 3k and hence a = 3e for some e ≤ k. It follows that
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1+2k = 3k−e. This Diophantine equation was already solved by the famous medieval
astronomer Levi ben Gerson (1288-1344), alias Leo Hebraeus, who showed that 8
and 9 are the only consecutive integers in the sequence of powers of 2 and 3, see
Ribenboim [23, pp. 124-125]. This leads to the solutions (e, k) ∈ {(0, 1), (1, 3)} and
hence (a,m, k) ∈ {(1, 3, 1), (3, 3, 3)}. Now assume that m ≥ 4 and k is odd. Then
by Lemma 1 we find that m(m − 1)/2 divides mk, which is impossible. We infer
that, to establish Conjecture 1, it is enough to establish the following conjecture.

Conjecture 2. The set

A = {a ≥ 1 : aSk(m) = mk has a solution with m ≥ 4 and k even}
is empty.

Lemma 7. Suppose that aSk(m) = mk with m ≥ 4 and k even. If p is a prime
dividing m, then (p− 1) ∤ k.

Proof. Assume that p | m and (p − 1) | k. Let pe ‖ m and pf ‖ a, where e ≥ 1,
f ≥ 0. Using Lemma 1 we find that Sk(m) ≡ m

pe
Sk(p

e) ≡ −m
p

(mod pe). Hence

aSk(m) ≡ −am
p

(mod pe+f), and so mk ≡ −am
p

(mod pe+f). Since pe+f−1 ‖ am
p
, we

deduce that pe+f−1 ‖ mk, and thus f = (k − 1)e + 1 ≥ k. Then a ≥ pk ≥ 2k and
aSk(m) > 2k(m− 1)k > mk, which contradicts the fact that aSk(m) = mk. �

Corollary 1. Suppose that aSk(m) = mk with m ≥ 4 and k even, then we have
gcd(m, 6) = 1.

Corollary 2. If gcd(a, 6) 6= 1, then a 6∈ A.

Lemma 8. Suppose that aSk(m) = mk with m ≥ 4 and k even. Suppose that a has
no prime divisor p satisfying p < 2s. Then a | m⌈k/s⌉−1.

Proof. Assume that a ∤ m⌈k/s⌉−1. Since each prime divisor of a divides m, there
exists a prime p such that p⌈k/s⌉ | a. By assumption p ≥ 2s. Then a ≥ (2s)⌈k/s⌉ ≥ 2k

and aSk(m) ≥ 2k(m− 1)k > mk, which is a contradiction. �

On combining the latter lemma and Corollary 2 we obtain the following result.

Corollary 3. Suppose that aSk(m) = mk with m ≥ 4 and k even, then a | m(k−2)/2.

Lemma 9. Suppose that aSk(m) = mk with m ≥ 4 and k even, then m | Uk.

Proof. Multiplying the Voronoi congruence by a and using the fact that aSk(m) =
mk, we deduce that Vkm

k ≡ Ukam (mod am2). Since m2 | m(k+2)/2 and, by Corol-
lary 3, a | m(k−2)/2, we have am2 | Ukam, that is m | Uk. �

Corollary 4. Suppose that aSk(m) = mk with m ≥ 4 and k even, then k ≥ 10.

Lemma 10. Suppose that aSk(m) = mk with m ≥ 4 and k even, then m2 | Uk.

Proof. By Corollary 4, k ≥ 10. Using Lemma 6 instead of the Voronoi congruence
and proceeding then by the same argument as in the proof of Lemma 9, we deduce
that am3 | Ukam, and so m2 | Uk. �

Since Uk is square-free for any even k < 50, we have



6 IOULIA N. BAOULINA AND PIETER MOREE

Corollary 5. Suppose that aSk(m) = mk with m ≥ 4 and k even, then k ≥ 50.

In case a = 1 the next result is Lemma 10 of [21].

Theorem 6. Suppose that aSk(m) = mk with m ≥ 4 and even k. Let p be a prime
dividing m. Then
(a) p is an irregular prime;
(b) k 6≡ 0, 2, 4, 6, 8, 10, 14 (mod p− 1);
(c) ordp(Bk/k) ≥ 2 ordp m ≥ 2;
(d) k ≡ r (mod p− 1) for some irregular pair (r, p).

Proof. By Corollary 1 and Lemmas 7 and 9 we see that p ≥ 5, (p − 1) ∤ k and
p | Uk. If p ∤ k, then ordp(Bk/k) > 0 and p is irregular. Now assume that p | k, i.e.,
ordp k ≥ 1. In view of Corollary 4 we have k ≥ 10. Further

Sk(m) = Bkm+
k(k − 1)

6
Bk−2m

3 +
k
∑

j=4

(

k

j

)

Bk−j
mj+1

j + 1
.

Hence

mk−1

ak
=

Bk

k
+

k − 1

6
Bk−2m

2 +m2
k
∑

j=4

(k − 1)!

(k − j)!
Bk−j

mj−2

(j + 1)!
. (5)

By Lemma 2 we have ordp Vk−2 ≤ 1, and hence

ordp

(

k − 1

6
Bk−2m

2

)

≥ 2 ordpm− ordp Vk−2 ≥ 1. (6)

Further, for j = 4, 5, . . . , k,

ordp

(

mj−2

(j + 1)!

)

= (j − 2) ordpm− j + 1− σp(j + 1)

p− 1
≥ j − 2− j

4
≥ 1,

where σp(j+1) denotes the sum of the digits of j+1 written in the base p. Therefore

ordp

(

m2
k
∑

j=4

(k − 1)!

(k − j)!
Bk−j

mj−2

(j + 1)!

)

≥ 2 ordp m ≥ 2. (7)

Note that

ordp

(

mk/2

k

)

=
k

2
ordpm− ordp k ≥ 1

2
pordp k − ordp k

> 22 ordp k−1 − ordp k ≥ ordp k ≥ 1. (8)

Using Corollary 3 we obtain

ordp

(

m(k−2)/2

a

)

≥ 0. (9)

It follows from (8) and (9) that

ordp

(

mk−1

ak

)

= ordp

(

m(k−2)/2

a
· m

k/2

k

)

≥ 1. (10)
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Combining (5) – (7) and (10), we deduce that ordp(Bk/k) > 0, and so p is irregular.
This completes the proof of part (a). Part (b) is a consequence of part (a), Lemma 7
and the Kummer congruence. In the case p ∤ k, part (c) follows from Lemma 10.
Now assume that p | k. By part (a), p is an irregular prime, and so p ≥ 37 > 25.
On combining Lemma 8 with s = 5 and Corollary 5, (9) is sharpened to

ordp

(

m(k−2)/2

a

)

> 2 ordpm.

Combining the latter estimate with (8) gives

ordp

(

mk−1

ak

)

> 2 ordpm. (11)

Further, by part (b) and the von Staudt-Clausen theorem, ordp Vk−2 = 0. Combining
(5), (6), (7) and (11), we complete the proof of part (c). Part (d) is a direct
consequence of part (c), the fact that (p− 1) ∤ k, and the Kummer congruence. �

Corollary 6. If a has a regular prime divisor, then a 6∈ A.

Corollary 7. Let p1 and p2 be distinct irregular prime divisors of a. Assume that
for every pair (r1, p1), (r2, p2) of irregular pairs we have gcd(p1−1, p2−1) ∤ (r1−r2).
Then a 6∈ A.

Example. Suppose that 37 · 379 | a. If a ∈ A then aSk(m) = mk with m ≥ 4 and
k even and both 37 and 379 must divide m. There is one irregular pair (32, 37)
corresponding to 37 and two irregular pairs (100, 379) and (174, 379) corresponding
to 379. By Theorem 6 (d), k must be a simultaneous solution of the congruences k ≡
32 (mod 36) and k ≡ 100 or 174 (mod 378), which is impossible as gcd(36, 378) =
18, 18 ∤ (32− 100) and 18 ∤ (32− 174). Hence a 6∈ A.

4. Helpful pairs

Helpful pairs will be used to show that certain ratios are forbidden (Section 5)
and to show that certain numbers have to divide k (Section 7). In both cases one
has to exclude that k is in certain congruence classes. In order to show that a
certain ratio is forbidden, we have to exclude all the congruence classes with an
appropriate modulus. In order to show that a certain even number d divides k, we
do this by excluding all the congruence classes 2i (mod d) for 1 ≤ i < d/2. If p | a
is an irregular prime, d = p− 1, then by Theorem 6 we immediately exclude many
congruence classes.

The exclusion of a congruence is achieved by a helpful pair and the procedure is
described just after the proof of the crucial Lemma 11.

Definition 1. For a positive integer a let us call a pair (t, q)a with q a prime and
2 ≤ t ≤ q − 3 even to be helpful if q ∤ a and aSt(c) 6≡ ct (mod q) for every integer c
satisfying 1 ≤ c ≤ q− 1. If q is an irregular prime, we require in addition that (t, q)
should not be an irregular pair.

Proposition 2. Let q ≥ 5 be a prime and a be a positive integer. Then (2, q)a is a

helpful pair if and only if
(

a2+36a+36
q

)

= −1.
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Proof. Note that B2 = 1/6 and hence (2, q) cannot be an irregular pair. Since
S2(c) = (2c3 − 3c2 + c)/6, we see that (2, q)a is a helpful pair if and only if q ∤ a
and a(2c3 − 3c2 + c) 6≡ 6c2 (mod q) for c = 1, . . . , q − 1, that is, if and only if
a(2c2 − 3c + 1) 6≡ 6c (mod q) for c = 0, . . . , q − 1, i.e., if and only if we have
(9(a+2)2−8a2

q

)

=
(

a2+36a+36
q

)

= −1. �

Proposition 3. Let q ≥ 7 be a prime with
(

31
q

)

= −1. Then (4, q)q−2 is a helpful
pair.

Proof. From
(

31
q

)

= −1 we deduce that 6n2+10n−1 6≡ 0 (mod q) for n = 1, . . . , q−1.

This implies that 30(q − 2)S4(c) − 30c4 ≡ −2c(6c4 + 10c2 − 1) 6≡ 0 (mod q) for
c = 1, . . . , q − 1. Since B4 = −1/30, (4, q) is not an irregular pair. Thus (4, q)q−2 is
a helpful pair. �

Lemma 11. Let 2 ≤ t ≤ q − 3 and q be a prime. If (t, q)a is a helpful pair and
aSk(m) = mk with k even, then we have k 6≡ t (mod q − 1).

Proof. Assume that k ≡ t (mod q − 1). By Theorem 6 (d) we must have q ∤ m,
for otherwise (t, q) is an irregular pair, contradicting the definition of a helpful pair.
Thus we can write m = m0q+ b with 1 ≤ b ≤ q− 1. By Lemma 1 we have q | St(q).
We now find, modulo q, Sk(m) ≡ St(m) ≡ m0St(q) + St(b) ≡ St(b). Thus if (3) is
satisfied we must have aSt(b) ≡ bt (mod q). By the definition of a helpful pair this
is impossible. �

Ruling out congruence classes for k. The helpful pairs give us a chance to rule
out k that satisfy certain congruences of the form k ≡ c (mod d) with c ≥ 2 and
d even. We first list all primes q ≥ 5 such that q − 1 divides d. Denote these
primes by q1, . . . , qs. Let ti denote the least nonnegative integer congruent to c
modulo qi − 1. If one of the pairs (ti, qi)a is helpful, by Lemma 11 we have ruled
out k ≡ c (mod d). If this does not work, we multiply d by an integer ℓ ≥ 2 (the
lifting factor). Our original congruence is now replaced by ℓ congruences, k ≡ c+ jd
(mod ℓd), 0 ≤ j < ℓ. For each of these congruences we now continue as before. In
certain cases we find that each of the lifted congruences is ruled out by a helpful
pair and then we are done. This situation is described in Proposition 4 below. If
not all of the lifted congruences are excluded by helpful pairs, we can lift the bad
congruences still further. The above procedure is not systematic and each stage the
danger lurks that we get too many congruence classes we cannot exclude anymore.

Proposition 4. Let p be an irregular prime dividing a. Assume that for every irreg-
ular pair (r, p) there exists a positive integer ℓr such that for every j = 0, 1, . . . , ℓr−1
there is a helpful pair (tj, qj)a with (qj−1) | ℓr(p−1) and tj ≡ r+j(p−1) (mod qj−1).
Then a 6∈ A.

Proof. Since p must divide m, Theorem 6 (d) yields k ≡ r (mod p − 1) for some
irregular pair (r, p). Hence there exists j ∈ {0, 1, . . . , ℓr−1} such that k ≡ r+j(p−1)
(mod ℓr(p − 1)). Then we have k ≡ tj (mod qj − 1) for the helpful pair (tj, qj)a,
which contradicts Lemma 11. �
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Corollary 8. Under the conditions of Proposition 4, we have ab 6∈ A for any pos-
itive integer b ≡ 1 (mod Q), where Q denotes the least common multiple of all
components qj of helpful pairs constructed for all irregular pairs (r, p) corresponding
to p.

5. Excluding a given ratio ρ

Let ρ ≥ 3. Write a = ρ − 1. If a has no regular prime divisor, the only way we
know to exclude ρ is by using helpful pairs or invoking Corollary 7. We demonstrate
this with two examples (an example of the usage of Corollary 7 we already gave
immediately following the statement of Corollary 7).

Easy example: a = 673.
There are two irregular pairs (408, 673) and (502, 673) corresponding to 673. The-
orem 6 (d) yields k ≡ 408 or 502 (mod 672). If k ≡ 408 (mod 672), then k ≡ 8
(mod 16). The latter is impossible since (8, 17)10 is a helpful pair by Table 2. If
k ≡ 502 (mod 672), then k ≡ 2 (mod 4), which is impossible as (2, 5)3 is a helpful
pair by Table 2.

Difficult example: a = 653.
There is one irregular pair (48, 653) corresponding to 653, and so k ≡ 48 (mod 652).
We have 652 = 22 · 163. There are no helpful pairs (48, q) with (q − 1) | 652. So we
have to use a lifting factor ℓ. It turns out that ℓ = 4 is a useful factor. So that is
why we use it in the first step.

Step 1. We have k ≡ 48 or 700 or 1352 or 2004 (mod 2608). The case k ≡ 48
(mod 2608) is impossible, since (48, 2609)653 is a helpful pair. If k ≡ 700 or 1352
(mod 2608), then k ≡ 8 or 12 (mod 16), which is impossible as (8, 17)7 and (12, 17)7
are helpful pairs. Thus k ≡ 2004 (mod 2608).

Step 2. We have k ≡ 2004 or 4612 or 7220 or 9828 or 12436 (mod 13040). If
k ≡ 4612 or 7220 or 9828 (mod 13040), then k ≡ 12 or 20 or 28 (mod 40). From
the fact that (12, 41)38, (20, 41)38 and (28, 41)38 are helpful pairs we deduce that the
latter congruence is impossible. Hence k ≡ 2004 or 12436 (mod 13040).

Step 3. We have k ≡ 2004 or 12436 or 15044 or 25476 or 28084 or 38516
(mod 39120). If k ≡ 15044 or 28084 (mod 39120) then k ≡ 4 or 14 (mod 30),
which is impossible as (4, 31)2 and (14, 31)2 are helpful pairs. If k ≡ 2004 or 25476
(mod 39120), then k ≡ 24 or 36 (mod 60). The latter is impossible, since (24, 61)43
and (36, 61)43 are helpful pairs. The case k ≡ 12436 (mod 39120) implies k ≡ 196
(mod 240), which is impossible as (196, 241)171 is a helpful pair. The remaining case
k ≡ 38516 (mod 39120) is also impossible, since in this case k ≡ 9176 (mod 9780)
and (9176, 9781)653 is a helpful pair.

Remark. Using helpful pairs, we can find some infinite families of forbidden ratios.
For example, let ρ = 37s+1 for some positive integer s. The prime 37 is irregular and
(32, 37) an irregular pair. If 37sSk(m) = mk with k even then, by Theorem 6 (d),
we have k ≡ 32 (mod 36). This implies that k ≡ 8 (mod 12). Since (8, 13)37s is
a helpful pair if and only if 37s ≡ 1 or 2 or 6 or 8 or 11 (mod 13) (see Table 2),
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we deduce that ρ = 37s + 1 is a forbidden ratio for any s ≡ 0 or 1 or 7 or 9 or 11
(mod 12).

6. Bad ratios

Table 3 gives a list of ratios we excluded and the helpful pairs used to do so. The
attentive reader will notice that various ratios ρ are apparently bad and difficult to
exclude. These are related to a = ρ − 1 that are of the form (2p + 1)s with p a
Sophie Germain prime. Recall that a prime p is said to be a Sophie Germain prime
if also 2p+ 1 is a prime. Heuristics suggests that there ought to be infinitely many
Sophie Germain primes such that 2p+ 1 is an irregular prime.

Conjecture 3. There are infinitely many primes p such that 2p+ 1 is an irregular
prime.

Let p be a prime such that 2p + 1 is an irregular prime and let (r, 2p + 1) be an
irregular pair. In case we want to rule out k ≡ r (mod 2p) we are in bad shape to
start with. We are directly forced here to use a lifting factor ℓ ≥ 2 (as the list of
primes 5 ≤ q < 2p+ 1 with (q − 1) | 2p is empty here). The next result shows that
we are in even worse shape, since helpful pairs with primes q = 2pu + 1 > 6p have
to be used.

Proposition 5. Let p be a prime such that 2p + 1 is an irregular prime dividing
a and let (r, 2p + 1) be an irregular pair. Let ℓ be a positive integer with p ∤ ℓ,
let q0, q1, . . . , qℓ−1 be odd primes with (qj − 1) | 2ℓ (not necessarily distinct) and let
t0, t1, . . . , tℓ−1 be positive integers satisfying the conditions tj ≡ r+2pj (mod qj−1),
0 ≤ j ≤ ℓ − 1. Then at least one of the pairs (t0, q0)a, (t1, q1)a, . . . , (tℓ−1, qℓ−1)a is
not a helpful pair.

Proof. Since r is even and p ∤ ℓ, there exists a j with 0 ≤ j ≤ ℓ − 1 such that
pj ≡ −r/2 (mod ℓ). Hence 2ℓ | (r + 2pj). This implies that (qj − 1) | tj, and so
(tj , qj)a is not a helpful pair. �

In case we are not able to exclude such a bad ratio, we might try at least to
show that the k of a solution has to be highly divisible. In the next section we
demonstrate this for the bad ratio 6780.

7. Divisibility of k

In this section, we consider the case a = 6779 = 2 · 3389 + 1 and show that for
a non-trivial solution k is divisible by a large number. We will present an heuristic
argument here why we think that for this a there are no solutions. We expect that
a similar reasoning might work for other values of a as well, once one can establish
that a smallish number like 120 divides k.

We start by discussing a baby example.

Proposition 6.

(a) If a ≡ 1 or 2 or 3 (mod 5), then 4 | k.
(b) If a ≡ 1 or 3 or 5 (mod 7), then 6 | k.
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(c) If a ≡ 6 or 7 (mod 11), then 10 | k.
(d) If a ≡ 2 or 8 or 11 (mod 13), then 12 | k.
(e) If a ≡ 1 or 6 (mod 13), then 6 | k.
(f) If a ≡ 1 or 5 (mod 11) and a ≡ 15 (mod 31), then 10 | k.
Proof. If, e.g., a ≡ 2 (mod 13), we see from Table 2 that the pairs (2, 13)a, (4, 13)a,
(6, 13)a, (8, 13)a and (10, 13)a are all helpful. The final assertion follows from glanc-
ing at an extended version of Table 2. �

Now let us consider a more serious example, with ρ = 6780 a bad ratio.

Proposition 7. If 6779Sk(m) = mk, then 26 · 33 · 52 · 7 · 11 · 13 | k.
Proof. We start with the congruence k ≡ 3994 (mod 6778), which is a consequence
of Theorem 6 (d) and the fact that there is only one irregular pair (3994, 6779)
corresponding to 6779.

Step 1. We have k ≡ 3994 or 10772 or 17550 (mod 20334). If k ≡ 3994 or 10772
(mod 20334) then k ≡ 2 or 4 (mod 6), which is impossible as (2, 7)3 and (4, 7)3 are
helpful pairs. Hence k ≡ 17550 (mod 20334) and 2 · 3 | k.

Step 2. We have k ≡ 17550 or 37884 or 58218 (mod 61002). The case k ≡ 58218
(mod 61002) is impossible, since in this case k ≡ 6 (mod 18) and (6, 19)15 is a
helpful pair. Hence k ≡ 17550 or 37884 (mod 61002).

Step 3. We have k ≡ 17550 or 37884 or 78552 or 98886 (mod 122004). If k ≡
17550 or 98886 (mod 122004), then k ≡ 18 or 30 (mod 36), which is impossible as
(18, 37)8 and (30, 37)8 are helpful pairs. Hence k ≡ 37884 or 78552 (mod 122004).

Step 4. We have k ≡ 37884 or 78552 or 159888 or 200556 (mod 244008). If
k ≡ 37884 or 159888 or 200556 (mod 244008), then k ≡ 12 or 36 or 48 (mod 72),
which is impossible as (12, 73)63, (36, 73)63 and (48, 73)63 are helpful pairs. Hence
k ≡ 78552 (mod 244008) and 23 · 32 | k.

Step 5. We have k ≡ 78552 or 322560 (mod 488016). In the case k ≡ 78552
(mod 488016) we have k ≡ 8 (mod 16), which is impossible as (8, 17)13 is a helpful
pair. Hence k ≡ 322560 (mod 488016) and 24 · 32 | k.

Step 6. We have k ≡ 322560 or 810576 (mod 976032). The case k ≡ 810576
(mod 976032) is impossible, since in this case k ≡ 48 (mod 96) and (48, 97)86 is a
helpful pair. Hence k ≡ 322560 (mod 976032) and 25 · 32 | k.

Step 7. We have k ≡ 322560 or 1298592 (mod 1952064). In the case k ≡
1298592 (mod 1952064) we have k ≡ 288 (mod 576). The latter is impossible, since
(288, 577)432 is a helpful pair. Hence k ≡ 322560 (mod 1952064) and 26 · 32 | k.

Step 8. We have k ≡ 322560 or 2274624 or 4226688 (mod 5856192). The case
k ≡ 322560 (mod 5856192) is impossible, since in this case k ≡ 288 (mod 432)
and (288, 433)284 is a helpful pair. In the case k ≡ 2274624 (mod 5856192) we
have k ≡ 36 (mod 108), which is impossible as (36, 109)21 is a helpful pair. Hence
k ≡ 4226688 (mod 5856192) and 26 · 33 | k.

Step 9. We have k ≡ 4226688 or 10082880 or 15939072 or 21795264 or 27651456
(mod 29280960). If k ≡ 15939072 or 27651456 (mod 29280960), then k ≡ 6 or 12
(mod 30), which is impossible as (6, 31)21 and (12, 31)21 are helpful pairs. In the
case k ≡ 21795264 (mod 29280960) we have k ≡ 24 (mod 60), which is impossible
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since (24, 61)8 is a helpful pair. The case k ≡ 4226688 (mod 29280960) is also
impossible, since in this case k ≡ 108 (mod 180) and (108, 181)82 is a helpful pair.
Hence k ≡ 10082880 (mod 29280960) and 26 · 33 · 5 | k.

Step 10. We have k ≡ 10082880 + 29280960j (mod 204966720) for some j ∈
{0, 1, . . . , 6}. If j ∈ {0, 1, 3, 6} then k ≡ 8 or 12 or 16 or 24 (mod 28), which is
impossible as (8, 29)22, (12, 29)22, (16, 29)22 and (24, 29)22 are helpful pairs. If
j = 4 or 5, then we have k ≡ 6 or 18 (mod 42). The latter is impossible, since
(6, 43)28 and (18, 43)28 are helpful pairs. Hence k ≡ 68644800 (mod 204966720) and
26 · 33 · 5 · 7 | k.

Step 11. We have k ≡ 68644800 + 204966720j (mod 1024833600) for some
j ∈ {0, 1, 2, 3, 4}. If j ∈ {1, 2, 3}, then k ≡ 20 or 40 or 60 (mod 100), which is
impossible as (20, 101)12, (40, 101)12 and (60, 101)12 are helpful pairs. The case
j = 4 is also impossible, since in this case k ≡ 3780 (mod 6300) and (3780, 6301)478
is a helpful pair. Hence k ≡ 68644800 (mod 1024833600) and 26 · 33 · 52 · 7 | k.

Step 12. We have k ≡ 68644800 + 1024833600j (mod 11273169600) for some
j ∈ {0, 1, . . . , 10}. If j ∈ {0, 2, 3, 6, 8}, then k ≡ 2 or 4 or 12 or 18 or 20 (mod 22),
which is impossible as (2, 23)17, (4, 23)17, (12, 23)17, (18, 23)17 and (20, 23)17 are
helpful pairs. If j ∈ {1, 5, 7}, then k ≡ 30 or 36 or 54 (mod 66), which is impossible
since (30, 67)12, (36, 67)12 and (54, 67)12 are helpful pairs. In the case j = 10 we have
k ≡ 16 (mod 88), which is impossible as (16, 89)15 is a helpful pair. The case j = 9
is also impossible, since in this case k ≡ 160 (mod 352) and (160, 353)72 is a helpful
pair. Hence k ≡ 4167979200 (mod 11273169600) and 26 · 33 · 52 · 7 · 11 | k.

Step 13. We have k ≡ 4167979200+11273169600j (mod 146551204800) for some
j ∈ {0, 1, . . . , 12}. If j ∈ {1, 3, 4, 5, 7, 8, 10}, then k ≡ 12 or 20 or 24 or 28 or 36 or
40 or 48 (mod 52), which is impossible as (12, 53)48, (20, 53)48, (24, 53)48, (28, 53)48,
(36, 53)48, (40, 53)48 and (48, 53)48 are helpful pairs. If j = 2 or 12, then k ≡
30 or 42 (mod 78), which is impossible, since (30, 79)64 and (42, 79)64 are helpful
pairs. If j = 0 or 6, then k ≡ 60 or 110 (mod 130), which is impossible as (60, 131)98
and (110, 131)98 are helpful pairs. The case j = 9 is also impossible, since in this
case k ≡ 96 (mod 156) and (96, 157)28 is a helpful pair. Hence k ≡ 128172844800
(mod 146551204800) and 26 · 33 · 52 · 7 · 11 · 13 | k. �

It seems that the type of argument used in the proof of Proposition 7 can be
continued to deduce that more and more small prime factors must divide k. Given
a prime q ≥ 5 and 2 ≤ t ≤ q − 3 even, one would heuristically expect that (t, q)a
is helpful with probability (1 − 1/q)q−1 which tends to 1/e, on assuming that the
values St(c) are randomly distributed modulo q. The numerical data obtained so
far turn out to be consistent with this.

For the original Erdős-Moser equation it is known (cf. [9, 21]) that N | k with

N = 28 · 35 · 54 · 73 · 112 · 132 · 172 · 192 · 23 · · ·997 > 5.7462 · 10427.
An heuristic argument can be given suggesting that if, say Lv := lcm(1, 2, . . . , v)
divides k, with tremendously high likelihood we can infer that Lw divides k, where
w is the smallest prime not dividing Lv. It is already enough to have v ≥ 11 here.
To deduce that k is divisible by say 24 might be delicate, but once one has Lv | k say,
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there is an explosion of further helpful pairs one can use to establish divisibility of k
by an even larger integer. To add the first prime w not dividing Lv, one needs to have
only a number of helpful pairs that is roughly linear in v, whereas an exponential
number (in v) is available. However, the required computation time goes sharply up
with increasing w.

This result gives a lower bound of 10427 for k, which is modest in comparison
with the lower bound obtained by Moser. However, as argued by Gallot et al. [7],
a result of the form N | k leads to an expected lower bound m > 10257N . For the
Kellner-Erdős-Moser equation we likewise expect a result of the form N | k to lead
to a lower bound for m that is exponential in N .

Unfortunately, the authors are not aware of any systematic approach that would
allow one to prove a result of the type that if aSk(m) = mk, then 120 | k, for every
a ≥ 1. Some preliminary work on this for the equation Sk(m) = amk was done by
the second author’s intern Muriel Lang [13] in 2009.

8. Lower bound for m

The aim of this section is to establish Theorem 7. The proof rests on Lemmas 12
and 13.

Lemma 12. Suppose that aSk(m) = mk with m ≥ 4 and k even. Then m − 1 and
2m−1 are square-free, and if p is a prime divisor of (m−1)(2m−1), then (p−1) | k.
Proof. Since

Sk(m− 1) = Sk(m)− (m− 1)k ≡ Sk(m) (mod m− 1),

Lemma 1 yields

a
∑

p|(m−1)
(p−1)|k

m− 1

p
+mk ≡ 0 (mod a(m− 1)). (12)

Note that if p | (m − 1) and (p − 1) ∤ k, then p | m, a contradiction that shows
that p | (m − 1) implies (p − 1) ∤ k. If p2 | (m − 1) it follows again that p | m, a
contradiction that shows that m− 1 is square-free.
Note that

Sk(2m− 1) =

m−1
∑

j=1

(jk + (2m− 1− j)k) ≡ 2Sk(m) (mod 2m− 1).

Then, again by Lemma 1,

a
∑

p|(2m−1)
(p−1)|k

2m− 1

p
+ 2mk ≡ 0 (mod a(2m− 1)), (13)

from which we deduce that 2m− 1 is square-free and each prime p dividing 2m− 1
satisfies (p− 1) | k. �

Corollary 9. Suppose that aSk(m) = mk with m ≥ 4 and k even, then m ≡ 3
(mod 4).
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Lemma 13. Suppose that aSk(m) = mk with m ≥ 4 and k even and let p be a prime
divisor of (m+1)(2m+1). If (p−1) | k then ordp((m+1)(2m+1)) = ordp(a+1)+1,
otherwise ordp((m+ 1)(2m+ 1)) ≤ ordp(a+ 1).

Proof. Observe that aSk(m+ 1) = (a + 1)mk. Invoking Lemma 1, we obtain

a
∑

p|(m+1)
(p−1)|k

m+ 1

p
+ (a+ 1)mk ≡ 0 (mod a(m+ 1)). (14)

Since p | a implies p | m it follows that gcd(a,m+ 1) = 1. Thus

ordp(m+ 1) = ordp(a + 1) + 1 if p | (m+ 1) and (p− 1) | k,
ordp(m+ 1) ≤ ordp(a+ 1) if p | (m+ 1) and (p− 1) ∤ k.

Further, from

aSk(2m+1) = a

m
∑

j=1

(jk+(2m+1−j)k) ≡ 2aSk(m+1) ≡ 2(a+1)mk (mod a(2m+1))

we deduce that

a
∑

p|(2m+1)
(p−1)|k

2m+ 1

p
+ 2(a+ 1)mk≡ 0 (mod a(2m+ 1)), (15)

and so

ordp(2m+ 1) = ordp(a+ 1) + 1 if p | (2m+ 1) and (p− 1) | k,
ordp(2m+ 1) ≤ ordp(a + 1) if p | (2m+ 1) and (p− 1) ∤ k.

Since m+ 1 and 2m+ 1 are coprime, the asserted result follows. �

Part (g) below arose in collaboration with Jan Büthe (University of Bonn) and we
only provide a sketch of the proof here. In a planned sequel to this paper [4] further
details will be given. We remark that if the condition m ≡ 1 (mod 30) is replaced
by

∑

p|(m−1)

1

p
+

1

a
> 1,

(cf. equation (22)) the same conclusion holds true.

Theorem 7. Assume that a > 1 is square-free and that aSk(m) = mk with m ≥ 4
and k even. Put a1 = gcd(a+ 1, m+ 1) and a2 = gcd(a + 1, 2m+ 1). Put

M =
(m2 − 1)(4m2 − 1)

6a1a2
.

Then
(a) m > a;
(b) m− 1, 2m− 1, (m+ 1)/a1, and (2m+ 1)/a2 are all square-free;
(c) if p divides at least one of the above four integers, then (p− 1) | k;
(d) m > 3.4429 · 1082;
(e) the number M is square-free and has at least 139 prime factors;
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(f) if m ≡ 1 (mod 3), then m > 1.485 · 109321155 and the number M has at least
4990906 prime factors;

(g) if m ≡ 1 (mod 30), then m > 104·10
20

and the number M has at least
75760524354901799895 prime factors.

Proof. As a is square-free, we have a | m, and so m ≥ a. If m = a, then (14) yields

∑

p|(m+1)
(p−1)|k

1

p
≡ 0 (mod 1).

Since the sum of reciprocals of distinct primes can never be a positive integer, we
must have

∑

p|(m+1)
(p−1)|k

1

p
= 0,

which contradicts the fact that 2 | (m+1). Parts (b) and (c) are direct consequences
of Lemmas 12 and 13. Further, using Lemma 13, parts (b) and (c) and the facts
that a | m and gcd(a,m−1) = gcd(a, 2m−1) = gcd(a,m+1) = gcd(a, 2m+1) = 1,
we find that

mk ≡ m (mod a(m− 1)),

2mk ≡ 4m (mod a(2m− 1)),

(a + 1)mk ≡ a + 1 + (a− 1)(m+ 1) (mod a(m+ 1)),

2(a+ 1)mk ≡ 2(a+ 1) + (a− 2)(2m+ 1) (mod a(2m+ 1)).

Here we will only provide details for the latter congruence, which is the most com-
plicated one to establish. Since a and 2m+1 are coprime, it suffices by the Chinese
remainder theorem to establish the congruence modulo a and modulo 2m+1. Since
a | m the congruence trivially holds modulo a.

Now suppose that p | (2m+ 1).
First case: (p− 1) | k.
By Lemma 13 we have ordp(2m+ 1) = ordp(a + 1) + 1 and it suffices to show that
mk ≡ 1 (mod p). This is true by Euler’s theorem.
Second case: (p− 1) ∤ k.
Here we use that, by Lemma 13 again, ordp(2m + 1) ≤ ordp(a + 1) to see that the
congruence holds.
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We can rewrite the congruences (12) – (15) as

∑

p|(m−1)

1

p
+

m

a(m− 1)
≡ 0 (mod 1), (16)

∑

p|(2m−1)

1

p
+

4m

a(2m− 1)
≡ 0 (mod 1), (17)

∑

p|m+1

a1

1

p
+

a+ 1 + (a− 1)(m+ 1)

a(m+ 1)
≡ 0 (mod 1), (18)

∑

p| 2m+1

a2

1

p
+

2(a+ 1) + (a− 2)(2m+ 1)

a(2m+ 1)
≡ 0 (mod 1). (19)

By Corollary 9, the assumption that k is even and Lemma 13, we see that (m+1)/a1
is even. Now noting that a ≥ 37 (by Corollary 6 and the fact that 37 is the first
irregular prime), we have

∑

p|m+1

a1

1

p
+

a + 1 + (a− 1)(m+ 1)

a(m+ 1)
≥ 1

2
+

a+ 1 + a(m+ 1)

a(m+ 1)
− 1

a
> 1.

Therefore, if we add the left hand sides of (16), (17), (18) and (19), we get an integer,
at least 5. No prime p > 3 can divide more than one of the integers m− 1, 2m− 1,
(m + 1)/a1, and (2m + 1)/a2, and 2 and 3 divide precisely two of these integers.
Hence M = (m2 − 1)(4m2 − 1)/(6a1a2) is square-free and

∑

p|M

1

p
+

1

a(m− 1)
+

2

a(2m− 1)
+

a+ 1

a(m+ 1)
+

2(a+ 1)

a(2m+ 1)

≥ 3− 1

2
− 1

3
= 2

1

6
. (20)

Since a | m, m > a ≥ 37 and each prime divisor of m is irregular, we have m ≥ 372.
A simple computation shows that (16) is never satisfied for a ≥ 37 and m = 372.
Since 59 is the second irregular prime, it follows that m ≥ 37 · 59. On noting
that the four fractions above are decreasing functions in both a and m, we find on
substituting a = 37 and m = 37 · 59 that

∑

p|M
1
p
> α, with α = 2.1657. Note that

if
∑

p≤x

1

p
< α, (21)

then m4/3 > M >
∏

p≤x p (note that a1 ≥ 2 and hence M < m4/3). One computes

(using a computer algebra package) the largest prime ps such that
∑

pj≤ps
1
pj

< 21
6
,

with p1, p2, . . . the consecutive primes. Here one finds that s = 139 and

139
∑

j=1

1

pj
< 2.16566 < α <

∑

p|M

1

p
.
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Thus

m >

(

3
∏

p≤p139

p

)1/4

> 3.4429 · 1082.

Now assume that m ≡ 1 (mod 3). Then 3 | (2m+ 1)/a1 by Lemma 13, and so

∑

p| 2m+1

a2

1

p
+

2(a+ 1) + (a− 2)(2m+ 1)

a(2m+ 1)
≥ 1

3
+

2(a+ 1) + a(2m+ 1)

a(2m+ 1)
− 1

a/2
> 1.

Hence in this case, 21
6
in (20) can be replaced by 31

6
. This α occurs in the work

of Moser and here it is known that s = 4990906 leading to m > 1.485 · 109321155
(cf. [5, 18]).

Finally, assume that m ≡ 1 (mod 30). Then

∑

p|(m−1)

1

p
+

m

a(m− 1)
>

1

2
+

1

3
+

1

5
> 1, (22)

and we have the inequality (20) with 21
6
replaced by 41

6
. In this case the largest

prime ps such that
∑

p≤ps
1
p
< 41

6
can no longer be determined by direct computation

and more sophisticated methods are needed, cf. [2, 4]. �

Remark. Note that in the proof we only used that a ≥ 37. This has as a consequence
that the proof only depends on the first assertion in Theorem 4.

9. Proofs of the new results announced in the introduction

It remains to establish Theorem 4, Theorem 5 and Proposition 1.

Proof of Theorem 4. The first restriction on a arises on invoking Corollary 6. In
order to obtain the second restriction we have two write down all integers a ≤ 1500
that are composed only of irregular primes. These are listed in Table 3. Each of
these can be excluded as is shown for two examples in Section 5. This exclusion
process for each a can be reconstructed using Table 3. �

To prove Theorem 5 we need the following result, which shows that m and k are
of comparable size.

Lemma 14. Suppose that aSk(m) = mk. Then k + 1 < am < (a + 1)(k + 1).

Proof. We have

Sk(m) ≤
m
∫

1

xkdx ≤ Sk(m+ 1)− 1.

Hence

mk = aSk(m) ≤ a

m
∫

1

xkdx =
a(mk+1 − 1)

k + 1
<

amk+1

k + 1
,
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and so am > k + 1. Further,

(a+ 1)mk = aSk(m+ 1) ≥ a

(

1 +

m
∫

1

xkdx

)

=
a(mk+1 + k)

k + 1
>

amk+1

k + 1
,

that is am < (a + 1)(k + 1). �

Proof of Theorem 5. The lower bound on m is a consequence of Theorem 7, part
(d). On invoking Lemma 14 with a ≥ 1501 the result follows. �

Proof of Proposition 1. Let (m, k) be a solution of (3). Observe that

Sj(m)

mj
=
( 1

m

)j

+
( 2

m

)j

+ · · ·+
(m− 1

m

)j

>
Sj+1(m)

mj+1
,

and so

aSj(m)−mj > 0 if j < k,

aSj(m)−mj < 0 if j > k.
(23)

This shows that for every m, there is at most one k.
Now assume that there exists a positive integer n such that aSk(m+n) = (m+n)k.

Then k > 1. Since

Sk(m+ n) = Sk(n) +

m−1
∑

j=0

(n + j)k = Sk(n) +mnk +

k
∑

j=1

(

k

j

)

nk−jSj(m),

we have

(m+ n)k =

k
∑

j=0

(

k

j

)

mjnk−j = aSk(n) + amnk + a

k
∑

j=1

(

k

j

)

nk−jSj(m),

or, equivalently,

nk = aSk(n) + amnk +
k−1
∑

j=1

(

k

j

)

nk−j(aSj(m)−mj).

In view of (23), the last equality cannot hold. Thus we see that, for every k, there
is at most one m. �

Remark. Using the same type of argument, we can prove the following: if (m1, k1)
and (m2, k2) are two distinct solutions of aSk(m) = mk then either m1 > m2, k1 > k2
or m1 < m2, k1 < k2.

10. Other properties of Kellner-Erdős-Moser solutions

There are many restrictions known that a solution of the Erdős-Moser equation
has to satisfy. We expect that most of these have an analogue for the Kellner-Erdős-
Moser equation as well. We present an example.
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Theorem 8. Suppose that aSk(m) = mk with m ≥ 4 and k even. We have

ord2(a(m− 1)− 2)

{

= 3 + ord2 k if a ≡ 1 (mod 4),

≥ 4 + ord2 k if a ≡ 3 (mod 4).

For a = 1 this was first established in Moree et al. [21, Lemma 12] using Bernoulli
numbers. A much more elementary proof also dealing with solutions of the equation
Sk(m) = amk for integers a was given later by the second author [17].

Our proof of Theorem 8 makes use of the following lemma.

Lemma 15. Let k and m be positive integers where k ≥ 6 is even. Then

Sk(m) ≡
{

[

m
2

]

+ 22+ord2 k (mod 23+ord2 k) if
[

m
2

]

≡ 2 (mod 4),
[

m
2

]

(mod 23+ord2 k) otherwise.

Proof. It is easily proved by induction on s that for an odd integer j and s ≥ 1

j2
s ≡

{

1 (mod 2s+3) if j ≡ ±1 (mod 8),

2s+2 + 1 (mod 2s+3) if j ≡ ±3 (mod 8).

Note that k ≥ 3 + ord2 k. Indeed, for ord2 k = 1 and ord2 k = 2 it follows from the
condition k ≥ 6 and for ord2 k ≥ 3 we have k ≥ 2ord2 k ≥ 3 + ord2 k. Thus for an
integer j we have

jk ≡











0 (mod 23+ord2 k) if j is even,

1 (mod 23+ord2 k) if j ≡ ±1 (mod 8),

22+ord2 k + 1 (mod 23+ord2 k) if j ≡ ±3 (mod 8).

Assume that m ≡ 1 (mod 4). Then

#{1 ≤ n < m : n ≡ ±1 (mod 8)} = #{1 ≤ n < m : n ≡ ±3 (mod 8)} =
m− 1

4
.

Hence

Sk(m) ≡ m− 1

4
+

m− 1

4
(22+ord2 k + 1) ≡ m− 1

2
(21+ord2 k + 1)

≡
{

m−1
2

(mod 23+ord2 k) if m ≡ 1 (mod 8),
m−1
2

+ 22+ord2 k (mod 23+ord2 k) if m ≡ 5 (mod 8).

Now assume that m ≡ 3 (mod 4). Then

#{1 ≤ n ≤ m : n ≡ ±1 (mod 8)} = #{1 ≤ n ≤ m : n ≡ ±3 (mod 8)} =
m+ 1

4
.

This yields

Sk(m+ 1) ≡ m+ 1

4
+

m+ 1

4
(22+ord2 k + 1) ≡ m+ 1

2
(21+ord2 k + 1)

≡
{

m+1
2

(mod 23+ord2 k) if m ≡ 7 (mod 8),
m+1
2

+ 22+ord2 k (mod 23+ord2 k) if m ≡ 3 (mod 8).
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Since

mk ≡
{

1 (mod 23+ord2 k) if m ≡ 7 (mod 8),

22+ord2 k + 1 (mod 23+ord2 k) if m ≡ 3 (mod 8),

we deduce that

Sk(m) = Sk(m+ 1)−mk ≡ m− 1

2
(mod 23+ord2 k).

Finally, if m is even then

Sk(m) ≡ Sk(m+ 1) ≡
{

m
2

(mod 23+ord2 k) if m 6≡ 4 (mod 8),
m
2
+ 22+ord2 k (mod 23+ord2 k) if m ≡ 4 (mod 8).

This completes the proof. �

Proof of Theorem 8. By Lemma 15 and Corollaries 4 and 9,

Sk(m) ≡ m− 1

2
(mod 23+ord2 k).

From Lemma 13 we see that

m ≡
{

7 (mod 8) if a ≡ 3 (mod 4),

3 (mod 8) if a ≡ 1 (mod 4).

Therefore

aSk(m) ≡ a · m− 1

2
≡ mk ≡

{

1 (mod 23+ord2 k) if a ≡ 3 (mod 4),

22+ord2 k + 1 (mod 23+ord2 k) if a ≡ 1 (mod 4),

and so

a(m− 1)− 2 ≡
{

0 (mod 24+ord2 k) if a ≡ 3 (mod 4),

23+ord2 k (mod 24+ord2 k) if a ≡ 1 (mod 4),

as desired. �

Theorem 9. Let a > 3. If aSk(m) = mk and m is a prime, then a = q2s for some
irregular prime q ≡ 3 (mod 16) and positive integer s.

Proof. If a has at least two distinct prime divisors, then m cannot be a prime.
Now assume that a is a power of a prime q. Then q is an irregular prime and
m = q. Suppose that a = q2s+1 for some s ≥ 0. Then (a + 1)mk/a(m + 1) =
(q2s+1 + 1)Sk(q)/(q + 1) is an integer, and (14) implies

∑

p|(q+1)
(p−1)|k

1

p
≡ 0 (mod 1).

Exactly as in the proof of Theorem 7, we conclude that this is impossible. Finally,
assume that a = q2s for some s ≥ 1. Then a ≡ 1 (mod 8). Note that k has to be
even. By Theorem 8 it follows that a(q − 1) ≡ 2 (mod 16), which yields q−1

2
≡ 1

(mod 8), that is, q ≡ 3 (mod 16). �
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Remark. It is not known whether there are infinitely many irregular primes q ≡ 3
(mod 16). However, from a result of Metsänkylä [15] it follows that there are infin-
itely many irregular primes q ≡ ±3,±5 (mod 16).
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Appendix

Table 1: Pairs of irregular primes (p1, p2) with p1 < p2,
p1p2 < 50000, satisfying the conditions of Corollary 7

p1 p2
37 67, 103, 149, 157, 271, 307, 379, 401, 409, 421, 433, 463, 523, 541, 547,

557, 577, 593, 607, 613, 631, 673, 727, 757, 811, 877, 881, 1061, 1117,
1129, 1153, 1193, 1201, 1237, 1297, 1327

59 233, 523
67 103, 157, 271, 283, 409, 421, 433, 463, 541, 547, 613, 617, 619, 683, 691,

727
101 131, 149, 157, 271, 311, 401, 409, 421, 433, 461
103 157, 283, 307, 463
131 157, 271
149 233, 257, 293
157 233, 257, 271, 293, 307

Table 2: Helpful pairs (t, q)a with q ≤ 17

q t a (mod q)
5 2 1, 2, 3
7 2 1, 3, 5
7 4 1, 3, 5
11 2 1, 2, 3, 5, 6, 7
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Table 2: Helpful pairs (t, q)a with q ≤ 17

q t a (mod q)
11 4 2, 3, 6, 7, 9
11 6 1, 5, 6, 7
11 8 6, 7, 9
13 2 1, 2, 5, 6, 8, 10, 11
13 4 1, 2, 6, 8, 11
13 6 2, 3, 4, 5, 7, 8, 9, 10, 11
13 8 1, 2, 6, 8, 11
13 10 1, 2, 4, 6, 7, 8, 11
17 2 1, 2, 5, 7, 8, 10, 13, 14
17 4 1, 2, 3, 5, 8, 9, 11, 12, 15
17 6 1, 2, 4, 5, 6, 8
17 8 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15
17 10 3, 7, 9, 11, 12, 14, 15
17 12 1, 2, 3, 5, 7, 8, 12, 14, 15
17 14 3, 4, 6, 7, 9, 11, 12, 14, 15

Table 3: Irregular pairs (r, p) along with the correspond-
ing helpful pairs (tj , qj)a(mod qj) satisfying the conditions
of Proposition 4

a irregular pair (r, p) ℓr helpful pairs (tj , qj)a(mod qj)

37 (32, 37) 1 (8, 13)11
59 (44, 59) 6 (2, 7)3, (4, 7)3, (6, 13)7, (276, 349)59
67 (58, 67) 2 (4, 13)2, (10, 13)2
101 (68, 101) 6 (2, 7)3, (4, 7)3, (28, 41)19, (168, 601)101
103 (24, 103) 14 (2, 5)3, (16, 29)16, (24, 43)17, (92, 239)103,

(194, 239)103, (228, 239)103, (636, 1429)103,
(840, 1429)103

131 (22, 131) 4 (2, 5)1, (12, 41)8, (152, 521)131
149 (130, 149) 15 (2, 11)6, (4, 11)6, (6, 11)6, (8, 11)6, (2, 13)6,

(10, 13)6, (30, 61)27
157 (62, 157) 1 (2, 5)2

(110, 157) 1 (2, 5)2
233 (84, 233) 1 (26, 59)56
257 (164, 257) 1 (4, 17)2
263 (100, 263) 30 (2, 5)3, (2, 31)15, (4, 31)15, (8, 31)15, (14, 31)15,

(16, 31)15, (22, 31)15, (28, 31)15, (40, 61)19,
(624, 787)263, (2196, 2621)263, (2720, 3931)263

271 (84, 271) 1 (4, 11)7
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Table 3: Irregular pairs (r, p) along with the correspond-
ing helpful pairs (tj , qj)a(mod qj) satisfying the conditions
of Proposition 4

a irregular pair (r, p) ℓr helpful pairs (tj , qj)a(mod qj)

283 (20, 283) 1 (2, 7)3
293 (156, 293) 30 (2, 11)7, (4, 11)7, (6, 11)7, (8, 11)7, (20, 41)6,

(40, 61)49, (740, 877)293, (1032, 1753)293
307 (88, 307) 1 (88, 103)101
311 (292, 311) 1 (2, 11)3
347 (280, 347) 30 (2, 5)2, (2, 11)6, (4, 11)6, (6, 11)6, (8, 11)6,

(10, 31)6, (20, 61)42, (972, 1039)347
353 (186, 353) 1 (2, 5)3

(300, 353) 9 (2, 7)3, (4, 7)3, (12, 37)20, (24, 37)20, (36, 73)61
379 (100, 379) 1 (4, 7)1

(174, 379) 1 (48, 127)99
389 (200, 389) 4 (4, 17)15, (8, 17)15, (12, 17)15, (976, 1553)389
401 (382, 401) 1 (2, 5)1
409 (126, 409) 3 (6, 19)10, (12, 19)10, (18, 37)2
421 (240, 421) 2 (20, 41)11, (240, 281)140
433 (366, 433) 1 (2, 5)3
461 (196, 461) 1 (12, 47)38
463 (130, 463) 1 (4, 7)1
467 (94, 467) 3 (2, 7)5, (4, 7)5, (1026, 1399)467

(194, 467) 18 (2, 5)2, (2, 7)5, (4, 7)5, (12, 37)23, (24, 37)23,
(3456, 8389)467

491 (292, 491) 1 (2, 11)7
(336, 491) 1 (6, 11)7
(338, 491) 1 (8, 11)7

523 (400, 523) 1 (4, 7)5
541 (86, 541) 1 (2, 5)1
547 (270, 547) 1 (36, 79)73

(486, 547) 2 (2, 5)2, (96, 157)76
557 (222, 557) 1 (2, 5)2
577 (52, 577) 1 (4, 7)3
587 (90, 587) 6 (2, 13)2, (4, 13)2, (6, 13)2, (8, 13)2, (10, 13)2,

(90, 1759)587
(92, 587) 6 (2, 13)2, (4, 13)2, (6, 13)2, (8, 13)2, (10, 13)2,

(678, 1759)587
593 (22, 593) 1 (2, 5)3
607 (592, 607) 1 (4, 7)5
613 (522, 613) 1 (2, 5)3
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Table 3: Irregular pairs (r, p) along with the correspond-
ing helpful pairs (tj , qj)a(mod qj) satisfying the conditions
of Proposition 4

a irregular pair (r, p) ℓr helpful pairs (tj , qj)a(mod qj)

617 (20, 617) 1 (20, 29)8
(174, 617) 1 (2, 5)2
(338, 617) 1 (2, 5)2

619 (428, 619) 1 (2, 7)3
631 (80, 631) 1 (2, 7)1

(226, 631) 1 (4, 7)1
647 (236, 647) 6 (2, 5)2, (2, 7)3, (4, 7)3, (84, 229)189

(242, 647) 3 (2, 7)3, (4, 7)3, (72, 103)29
(554, 647) 12 (2, 5)2, (2, 7)3, (4, 7)3, (180, 409)238,

(288, 457)190
653 (48, 653) 60 (8, 17)7, (12, 17)7, (4, 31)2, (14, 31)2, (12, 41)38,

(20, 41)38, (28, 41)38, (24, 61)43, (36, 61)43,
(196, 241)171, (48, 2609)653, (9176, 9781)653

659 (224, 659) 18 (2, 7)1, (4, 7)1, (6, 13)9, (12, 19)13, (42, 127)24,
(882, 5923)659

673 (408, 673) 1 (8, 17)10
(502, 673) 1 (2, 5)3

677 (628, 677) 3 (4, 13)1, (8, 13)1, (30, 79)45
683 (32, 683) 12 (2, 5)3, (32, 67)13, (76, 89)60, (280, 373)310,

(2760, 4093)683
691 (12, 691) 1 (12, 31)9

(200, 691) 1 (2, 7)5
727 (378, 727) 1 (4, 23)14
751 (290, 751) 1 (40, 251)249
757 (514, 757) 1 (2, 5)2
761 (260, 761) 1 (20, 41)23
773 (732, 773) 60 (2, 7)3, (4, 7)3, (2, 11)3, (4, 11)3, (4, 17)8,

(12, 17)8, (16, 41)35, (120, 241)50,
(1118, 1931)773, (1504, 3089)773

797 (220, 797) 9 (8, 37)20, (20, 37)20, (220, 2389)797,
(1812, 2389)797, (2210, 3583)797

809 (330, 809) 5 (2, 11)6, (4, 11)6, (6, 11)6, (8, 11)6, (10, 41)30
(628, 809) 5 (2, 11)6, (4, 11)6, (6, 11)6, (8, 11)6, (20, 41)30

811 (544, 811) 1 (4, 19)13
821 (744, 821) 1 (4, 11)7
827 (102, 827) 6 (2, 13)8, (4, 13)8, (6, 13)8, (8, 13)8, (10, 13)8,

(2580, 4957)827
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Table 3: Irregular pairs (r, p) along with the correspond-
ing helpful pairs (tj , qj)a(mod qj) satisfying the conditions
of Proposition 4

a irregular pair (r, p) ℓr helpful pairs (tj , qj)a(mod qj)

839 (66, 839) 1680 (2, 11)3, (4, 11)3, (6, 13)7, (10, 13)7, (8, 17)6,
(2, 29)27, (4, 29)27, (8, 29)27, (10, 29)27,
(12, 29)27, (14, 29)27, (16, 29)27, (18, 29)27,
(20, 29)27, (22, 29)27, (10, 31)2, (20, 31)2,
(10, 41)19, (16, 41)19, (20, 41)19, (26, 41)19,
(28, 41)19, (30, 41)19, (38, 41)19, (28, 61)46,
(48, 61)46, (56, 61)46, (28, 71)58, (56, 71)58,
(4, 97)63, (52, 97)63, (76, 97)63, (26, 211)206,
(66, 211)206, (6, 281)277, (80, 281)277,
(138, 281)277, (248, 281)277, (258, 281)277,
(220, 673)166, (17664, 20113)839

877 (868, 877) 1 (4, 13)6
881 (162, 881) 1 (2, 5)1
887 (418, 887) 3 (2, 7)5, (4, 7)5, (2190, 2659)887
929 (520, 929) 1 (8, 17)11

(820, 929) 1 (4, 17)11
953 (156, 953) 1 (20, 137)131
971 (166, 971) 42 (2, 7)5, (4, 7)5, (2, 29)14, (16, 29)14, (18, 43)25,

(24, 43)25, (36, 43)25, (26, 71)48, (56, 71)48,
(6, 211)127

1061 (474, 1061) 1 (2, 5)1
1091 (888, 1091) 8 (2, 5)1, (4, 17)3, (8, 17)3, (12, 17)3, (8, 41)25
1117 (794, 1117) 1 (2, 5)2
1129 (348, 1129) 5 (2, 11)7, (4, 11)7, (6, 11)7, (8, 11)7, (20, 41)22
1151 (534, 1151) 1 (4, 11)7

(784, 1151) 1 (4, 11)7
(968, 1151) 1 (8, 11)7

1153 (802, 1153) 1 (2, 5)3
1193 (262, 1193) 1 (2, 5)3
1201 (676, 1201) 1 (4, 17)11
1217 (784, 1217) 3 (4, 13)8, (8, 13)8, (48, 97)53

(866, 1217) 1 (2, 17)10
(1118, 1217) 3 (2, 13)8, (6, 13)8, (10, 13)8

1229 (784, 1229) 28 (4, 17)5, (8, 17)5, (12, 17)5, (16, 29)11,
(32, 113)99, (784, 8597)1229, (2012, 8597)1229,
(3240, 8597)1229, (5696, 8597)1229,
(6924, 8597)1229

1237 (874, 1237) 1 (2, 5)2
1279 (518, 1279) 1 (2, 7)5
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Table 3: Irregular pairs (r, p) along with the correspond-
ing helpful pairs (tj , qj)a(mod qj) satisfying the conditions
of Proposition 4

a irregular pair (r, p) ℓr helpful pairs (tj , qj)a(mod qj)

1283 (510, 1283) 10 (2, 5)3, (2, 11)7, (4, 11)7, (6, 11)7, (8, 11)7,
(6920, 12821)1283

1291 (206, 1291) 2 (2, 5)1, (56, 61)10
(824, 1291) 1 (14, 31)20

1297 (202, 1297) 1 (2, 5)2
(220, 1297) 1 (12, 17)5

1301 (176, 1301) 1 (20, 53)29
1307 (382, 1307) 3 (2, 7)5, (4, 7)5, (2994, 3919)1307

(852, 1307) 3 (2, 7)5, (4, 7)5, (852, 3919)1307
1319 (304, 1319) 360 (2, 7)3, (4, 7)3, (8, 17)10, (6, 31)17, (12, 31)17,

(18, 31)17, (24, 31)17, (6, 37)24, (12, 37)24,
(18, 37)24, (30, 73)5, (36, 73)5, (66, 73)5,
(2940, 11863)1319, (42480, 52721)1319

1327 (466, 1327) 2 (2, 5)2, (4, 13)1
1367 (234, 1367) 6 (2, 5)2, (4, 13)2, (8, 13)2, (234, 4099)1367
1369 (32, 37) 10 (2, 11)5, (6, 11)5, (14, 31)5, (8, 41)16, (20, 61)27
1381 (266, 1381) 1 (2, 5)1
1409 (358, 1409) 1 (6, 23)6
1429 (996, 1429) 1 (44, 239)234
1439 (574, 1439) 630 (4, 11)9, (8, 11)9, (2, 19)14, (4, 19)14, (8, 19)14,

(10, 19)14, (12, 19)14, (2, 31)13, (6, 31)13,
(12, 31)13, (22, 31)13, (26, 31)13, (24, 37)33,
(6, 43)20, (24, 43)20, (10, 61)36, (30, 61)36,
(40, 61)36, (30, 71)19, (40, 71)19, (36, 127)42,
(16, 181)172, (50, 181)172, (140, 181)172,
(60, 211)173, (574, 8629)1439, (50904, 60397)1439

1483 (224, 1483) 2 (2, 13)1, (8, 13)1
1499 (94, 1499) 24 (2, 7)1, (4, 7)1, (6, 13)4, (4, 17)3, (8, 17)3,

(10, 17)3, (12, 17)3, (14, 17)3, (736, 857)642
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